Tag Archives: burns

Equipment, procedural failure lead to resident scalding

By ThinkReliability Staff

While equipment and procedures were both in place to prevent resident scalding from too-hot baths, failures of both resulted in a resident receiving serious burns on August 13, 2013. The Health and Safety Executive (HSE) report was recently released on the incident, which resulted in prosecution for the care home and the employee responsible for the bath.

This incident illustrates the limitation in looking for the “one” root cause. There wasn’t just one thing that resulted in this incident; rather multiple failures were required to result in the tragic scalding. We can show these causes by performing a visual root cause analysis, known as a Cause Map. Note that the term “root cause” refers to a system of causes, much like the root of a plant is a system.

We begin the analysis by looking at the impact to the goals. Resident safety was impacted due to the very serious burning of a resident. The burning was so severe it resulted in the amputation of ten toes and the resident will never walk again. In addition, employee safety is impacted because of the emotional impact to the employee (known as the second victim). The employee safety is also impacted due to a risk of burns. The environmental goal is impacted due to the lack of temperature control and the compliance goal is impacted due to the prosecution of both the employee and the care home. Resident services are impacted from a resident being placed in a scalding bath. The failure of a thermostat is an impact to the property goal and the time required for response and investigation is an impact to the labor and time goal.

Beginning with one of the impacted goals (in this case we’ll begin with the resident safety goal) and asking “why” questions develops the cause-and-effect relationships that caused the incident. In this case, the resident’s injuries resulted from being placed in a scalding bath and being unable to exit due to physical and communication limitations. The resident was placed in the too-hot bath because the water in the bath was too hot, and the caregiver placed the resident in the bath. Both of these things (the water temperature being too high, and the caregiver placing the resident in the bath) had to occur in order for the injury to occur.

The water temperature was too high because of the failure of the immersion heater thermostat. The reason for the failure, as well as how long it was not working, is unknown. The caregiver placed the resident in the bath because she did not check the water temperature and failed to realize it was too hot. The caregiver appears to have been unaware of the thermostat failure, or certainly there would have been other safeguards in check. Additionally, there were inadequate thermometers provided to check the water temperature. (A manual check for comfort was still possible, though in this case could have resulted in a burn to the employee.) Although it was “required” to test the water temperature and record that the check had been done, there were no written instructions to that effect.

The care home has purchased portable thermometers for caregivers’ use, but the HSE also recommends the use of a secondary thermostatic cut-out, which would prevent boiling of the water tank even if the thermostat failed. The HSE has also provided a white paper “Managing the risks from hot water and surfaces in health and social care“, that discusses appropriate risk assessments and control measures to prevent burns of vulnerable care home residents.

To view the Cause Map of this incident, click “Download PDF” above.

Or, click here to read the HSE report of the incident.

Facial Burns from Surgical Fires

By ThinkReliability Staff

At least two patients received burns to the face from surgical fires in early December 2011.  Surgical fires are becoming an increasing risk to patients (and staff) in the operating room.  Although the 550-650 surgical fires a year that are estimated to occur by the ECRI Institute is a small percentage of patients undergoing surgery, this doesn’t make surgical fires seem “rare” to those who are affected.

A surgical fire, like any fire, requires the presence of three elements: a heat (or ignition) source, fuel, and an oxidizing agent.  Oxygen is necessarily present for breathing; however, additional oxygen supplied to the patient increases the risk of a fire.  Additionally, nitrous oxide produces oxygen from thermal decomposition.  An increased level of oxygen increases the risk of a surgical fire.  Like oxygen, fuel will always be present in a surgical room.  Prep agents, drapes, and even a patient’s hair are fuel sources.  Vapors from insufficiently dry prep agents are extremely flammable.  Although some drapes are advertised as flame-resistant, the ECRI has determined that all types of drapes burn in oxygen.

Surgical equipment, such as electro-cautery devices and lasers, are believed to provide the ignition source for many surgical fires.  The increased use of such devices is believed to contribute to the increase in surgical fires.  Although these devices can provide benefits during surgery, a non-ignition source tool should be considered for surgery performed near the oxygen supply of a patient requiring oxygen.

The best way to protect patients from surgical fires is to prevent them by reducing the use of oxygen, decreasing the flammability of potential fuel sources in the operating room (by allowing prep agents to dry and coating hair or other flammable objects with water-based lubricant) and ensuring that heat sources are monitored carefully to reduce the risk of ignition.  In addition, operating teams should be prepared in the case of fire to minimize effects on patient and staff safety by taking steps to extinguish the fire and evacuate if necessary.

The effects and causes of surgical fires, as well as some recommended solutions, can be diagrammed in a Cause Map, a visual form of root cause analysis.  To view the Cause Map for surgical fires, please click “Download PDF” above.  Or click here to read a more detailed write-up about patient burns.

Additional resources on surgical fires:

ECRI Institute

FDA

The Joint Commission

Anesthesia Patient Safety Foundation (APSF)