All posts by ThinkReliability Staff

ThinkReliability are specialists in applying root cause analysis to solve all types of problems. We investigate errors, defects, failures, losses, outages and incidents in a wide variety of industries. Our Cause Mapping analysis method of root causes, captures the complete investigation with the best solutions all in an easy to understand format. ThinkReliability provides investigation services and root cause analysis training to clients around the world and is considered the trusted authority on the subject.

HIPAA Breach Compromised Data from 187,533 Patients

By ThinkReliability Staff

On July 1, 2013, 187,533 clients of the Indiana Family and Social Security Agency (FSSA) were notified that their medical and financial information may have been accidentally sent to other clients.  Of these, nearly 4,000 may have had their social security numbers disclosed.  Not only is this a breach of the Healthcare Insurance Portability and Accountability Act (HIPAA), it can potentially result in identity theft for those patients affected.

There’s more to this case than initially meets the eye, and many open questions.  We can get our bearings around what is known and what is as yet unknown that may have resulted in issues for patients and the agency involved by capturing the information within a Cause Map, or visual root cause analysis.  Doing so for events that occur can increase Healthcare reliability by delving deeper into related causes, leading to better solutions.

The first step when beginning an investigation is to capture the what, when and where of an incident as well as the impacts to the goals.  If more than one date is relevant, it may be helpful to capture it in a timeline.  In this case, the error was introduced on April 6, 2013.  The error was fixed (at which point the data breach ended) on May 21, 2013.  However, clients were not notified of the potential breach until July 1, 2013.

The impacts to the organization’s goals are those things that prevent an organization from having a perfect day.  In this case, nobody was injured and it’s unclear if there was an impact to employees.  The compliance goal was impacted due to the HIPAA breach.  The organization is impacted because of the breach of patient trust.  Patient services were impacted due to compromised confidential patient information and the potential for identity theft.

We begin with one of the impacts to the goals and ask “Why” questions to develop the cause-and-effect  relationships that led to the impact.  In this case, identity theft is a potential issue because of the compromised patient and financial information, especially social security numbers.  However, the longer the period between the potential breach and when patients are notified, the greater the risk for identity theft.  In this case, from the date that the programming error was incorporated into the system until the patients were notified of the breach was 86 days.  Of this, 34 days elapsed before the error was noticed, but there has been no explanation for the additional 52 days before the notification.  Because the speed of the notification is so important, the “why” here should be addressed in the Cause Map and solutions developed to ensure a speedier notification system in the case of another breach.

We can also ask additional “why” questions to determine how the breach happened in the first place.  Clients were sent confidential health and financial information belonging to other clients.  Though details are sparse, an improperly used variable resulted in an error in the customized coding provided by a contractor to the agency.  How the error made it in – and why it wasn’t found by either the contractor or the agency involved – is unclear.  These are questions that need to be answered during the root cause analysis to reduce the risk of this kind of issue happening again.

The potentially compromising mailing continued for 45 days, increasing the number of people impacted.  (The agency says that because of the way the mailings are done, they have no way to know whose information was actually sent out.)  Of these 45 days, it took 34 days to notice the error.  (How the error was noticed is also not clear but is additional information that should be included in the analysis.)  After the error was discovered, the mailings apparently continued while the error was being fixed for 11 days.  This is yet another line of inquiry to be undertaken during the analysis.  Ideally solutions will help to implement fixes faster – and make sure that breaches don’t continue when a system is known to be working improperly.

In a letter sent to the clients potentially affected, the FSSA stated that the contractor who provides the programming “also is taking steps to improve their computer programming and testing processes to prevent similar errors from occurring in the future.”   While this is certainly necessary, the FSSA should also be looking at their own processes for verifying contractor work and notifying clients in the case of a data breach.

To view the Outline and Cause Map, please click “Download PDF” above

Is a Doctor onboard? Management of inflight medical emergencies depends on other passengers

By ThinkReliability Staff

In a recent article, Pierre M. Barker, M.D. describes a terrifying situation – a passenger stops breathing on a plane over the Atlantic Ocean.  Turns out inflight medical emergencies are not that uncommon.  A study published in the New England Journal of Medicine says that about 1 in 600 flights has an inflight medical emergency – for a total of about 44,000 a year, worldwide.  Although the number of people who die as a result of these emergencies is fairly low, the incident that Dr. Barker was involved in indicates there is much room for improvement.

Taking the information from Dr. Barker’s article, we can perform a visual root cause analysis, or Cause Map, of the medical emergency on his flight.  Information gleaned from performing an analysis of one particular incident can provide valuable insight to improving outcomes for similar incidents – in this case, all inflight medical emergencies.

After recording the what, when, and where of the incident (here it’s inflight over the Atlantic Ocean), we capture the incidents to the goals.  Based on Dr. Barker’s description, this situation is aptly described as a “near miss” for patient safety.  What this means is that, had a lot of luck not headed this passenger’s way, he may very well have died on this flight.  We’ll discuss exactly what it is that made it a near miss – and not a fatality – later.   In this situation – and many other inflight emergencies – it seems that the employees are inadequately prepared for medical emergencies.  This is an impact to them – certainly it must be very stressful to have this sort of situation happen on their watch while feeling like there’s not much they can do.   In this case (and occasionally other, similar inflight emergencies), the flight was diverted, an impact to the organization’s goals.  Considering the sick passenger as a “patient” (and this is how I’ll refer to him going forward), the patient services were impacted because the ventilation bag did not connect to the oxygen tank.  Lastly, other passengers were called on to treat the “patient”, which was found to be very typical from the study.  This is an impact to the labor/time goal.

Once we’ve determined which goals were impacted, we can ask “Why” questions to determine which cause-and-effect relationships led to the impacted goals.  In this case there’s a combination of negative impacts and positive impacts – which is how the situation ended up as a “near miss”.  On the negative side, the patient stopped breathing and suffered cardiac arrest.  Because the conditions on a plane are hardly ideal for health, this may contribute to inflight medical emergencies.  There was difficulty in giving the patient oxygen, because the ventilation bag did not connect to the oxygen tank.  Additionally, there was a lack of patient medical history.  The patient was unconscious and there was no health information available which may have aided in his treatment.

The situation described above could have gone very, very badly.  There are some positive causes that contributed as well to make this a near miss.  First, the fact that the patient had stopped breathing was noticed very quickly, because he happened to have Dr. Barker – a pediatric lung specialist – two rows behind him who noticed his difficulty breathing, and then when it stopped altogether.  Because this was not by design but rather a stroke of rather good luck, this is how we get a “near miss”.  After all, you certainly can’t count on a lung specialist tracking the breathing of every person on a plane to stop inflight emergencies.  Not only was the issue noticed quickly it was treated quickly, by Dr. Barker as well as two ER nurses, a surgeon and an infectious disease doctor, as well as a flight attendant who performed a cardiac massage.  This ad-hoc medical team managed to do a heroic job of stabilizing the patient – including use of an AED, which was on the flight, an IV with fluids and glucose, and administration of an aspirin donated by another patient (though according to the study, aspirin should be included in the emergency medical kit on each flight as well).

The flight was diverted – as quickly as possible – to Miami.  This took about two and a half hours, during which time the medical team kept the patient stable until he was transferred off-plane.  This patient was extremely lucky to have these medical personnel aboard.  According to the NEJM study, doctors are present about 50% of time on flights, and the responsibility for treatment of inflight medical emergencies – as well as the decision whether to divert a plane – is generally left up to them.  When an inflight medical emergency occurs and a doctor is not present, the plane is more likely to divert.

As a result of this incident, Dr. Barker has some recommendations on how to make flying safer.  The NEJM study also makes some recommendations.  These solutions are placed directly on the Cause Map, and evaluated for effectiveness.  In this case, creating a standard emergency kit (there is an FAA-mandated emergency medical kit but as seen in this incident, the pieces may or may not work together properly and the kit may be different on different flights) for all flights should be developed.  This kit should ensure that all necessary equipment and medication for the most common and dangerous inflight medical conditions is included and that all flight attendants know where to find and how to put together the necessary pieces of equipment in the kit.  If, as seems to be the case, medical professionals on flights are expected to be responsible for other sick passengers in the case of an emergency, they should be notified as such.  If this occurred, flight attendants would also be aware of where to find these medical professionals.  This could involve a briefing similar to that received by personnel who sit in exit rows.  Where easy diversion is not possible (such as flights over oceans or uninhabited areas), at least one flight attendant should receive EMT training which includes in-depth instruction on how to use the medication and equipment available in the medical kit.  Coordination with onground medical staff should continue, with a focus on trying to make medical history available when possible.

The aviation industry has made flying incredibly safe.  Although inflight medical emergencies are rare and usually non-fatal, the industry now has the opportunity to make experiencing a medical emergency onboard a flight even safer.

To view the Outline, Cause Map, and proposed solutions,  please click “Download PDF” above.  Or click here to read more.

Manifestation of Poor Glycemic Control Part 1

By ThinkReliability Staff

Nonketotic hyperosmolar coma resulting from poor glycemic control within a hospital setting is now considered a hospital-acquired condition by Medicare & Medicaid, meaning that hospitals will not receive additional  payment for cases when this condition is acquired during hospitalization.  Because of the severity of the impact of this condition, its implications and causes should be carefully studied to determine ways to reduce the risk of this condition being acquired during a hospital stay.

We can look at the impacted goals for a hospital and the potential causes for this condition, in a visual root cause analysis or Cause Map.  To perform a Cause Mapping analysis, we will first determine the impacts of a given condition on an organization’s goals, then develop cause-and-effect relationships to diagram the causes that result in the condition.

According to a study published in the International Journal for Quality in Health Care, diabetic emergencies, including nonketotic hyperosmolar coma,  increases the risk of patient death (from 9% to 16%),  length of patient stay (from 7 to 14 days) and treatment requirements.  The costs associated with nonketotic hyperosmolar coma (greater than $114 million in the US in 2007, according to CMS) are no longer reimbursable when the condition is acquired in the hospital.  Additionally, patient death due to hospital-acquired conditions can result in a second victim – the healthcare provider(s).

To analyze this issue, we begin with an impacted goal and ask “Why” questions.  In this case, we are looking at the impact to the patient safety goal becaue of the  increased risk of patient death due to nonketotic hyperosmolar coma, which is caused by uncontrolled hyperglycemia (high blood glucose).   Associated infection, medication that interferes with glucose absorption, and insulin deficiency can all contribute to hyperglycemia.  Insufficient knowledge of providers about glycemic control can result in diabetic patients being given medications that interfere with glucose absorption, or in inadequate control of diabetes with insulin in the hospital setting.

The study referenced above also found that insufficient staffing, which may result in insufficient backups/checks of staff, use of workarounds, and ineffective communication between the team, leading to insufficient tracking of glycemic control.    Providers may also be unaware of a patient’s diabetic status, due to poor record keeping or communication.   Inadequate insulin therapy can also contribute to hyperglycemia.  Specifically, medication errors involving insulin (see our medication error Cause Map), fear of hypoglycemia (which may result in fear of aggressive insulin therapy), and  failure to adjust insulin for diet or other factors, including age, renal failure, liver disease, can result in an all too common “one size fits all” linear sliding insulin scale providing inadequate results.

Two other conditions are considered hospital-acquired manifestations of poor glycemic control, diabetic ketoacidosis and hypoglycemic coma.  In future blogs, we will discuss the causes of these issues, and suggested solutions to reduce the risk of these types of incidents.

To view the Outline and Cause Map, please click “Download PDF” above.  Or click here to read more.

Contaminated Injections Kill 5

By ThinkReliability Staff

At least 35 patients have come down with rare fungal meningitis after an injection they received for back pain was contaminated with fungus. Five have died so far. Because of the severity of the disease and the long incubation period, more cases – and more deaths – are expected in the coming months.

We can examine the issues related to the fungal meningitis in a Cause Map, or visual root cause analysis. Documenting the causes visually can make a complex medical issue easier to understand. We begin with the impacts to the goals. The deaths and severe sickness are an impact to the patient safety goal. While we begin with the known cases, these numbers can be updated if more cases are discovered. The compounding company which prepared the injections has voluntarily surrendered its license, an impact to the compliance goal and has recalled 3 lots of the drug used in the injection (methylprednisolone acetate), which can be considered an impact to both the organizational and property goal. The extremely difficult treatment ahead of these patients (estimated to take months) is an impact to the patient services and labor goal. The contamination of the injection itself can be considered an environmental goal.

Once we have captured these impacted goals, we can begin with the focus of our investigation – the patient safety goal – and ask “why” questions to develop the cause-and-effect relationships that resulted in the disease. The patient deaths and sickness are due to contraction of fungal meningitis. These patients came down with fungal meningitis because fungus was introduced to their nervous system. The injections that the patients received for back pain were injected epidurally, which allows access to the nervous system, and were infected with aspergillus, a common fungi. More testing is being done to determine whether the contamination was in the drug within the injection, or the numbing agent or antiseptic wipes being used. Due to the widespread (across several states) outbreak, it is believed that the drug within the injection is to blame, but because of the seriousness of this issue, all potential causes are being carefully tested.

Because the drug used in the injection was compounded, the contamination could have occurred within a raw ingredient used in the compounding, or it could have become contaminated during the compounding process. The source of the outbreak is not yet known, but because compounded drugs and compounding companies receive less oversight than drug manufacturers, it is suspected that the contaminant was introduced during the compounding process.

Initial symptoms of fungal meningitis are subtle, including headache, fever, dizziness, nausea and slurred speech. The symptoms can take up to a month from introduction of the fungus to appear. If patients have received a shot for back pain, they should contact their doctor to see if it was from the infected lot. Early and immediate treatment is important.

To view the Outline and Cause Map, please click “Download PDF” above. Or click here to read more.

 

More Known About Why A Donated Kidney Was Trashed

By ThinkReliability Staff

In a previous blog, we wrote about a donated kidney that was accidentally thrown out rather than being transplanted.  We began the root cause analysis investigation with the information that was available, but there were still a lot of open questions.

The Centers for Medicare & Medicaid Services (CMS) has released a report on the incident, which provides additional information we can use to update our Cause Map.  We can update all areas of the investigation, including updating any additional goals that were found to be impacted.  In this case, three employees had been placed on administrative leave.  Since the time of the previous blog, four employees have had their careers impacted – one has resigned, one has been fired, one has had a title removed, and another has since returned from paid administrative leave.  Additionally, there is a risk that the hospital may be removed from the Medicare program, another impact to the compliance goal.

The report provides more specific causes, and evidence, regarding the incident.  We know now that the kidney, which was to be transplanted, was instead thrown in a hopper by the circulating nurse.  We can ask “Why” questions to add more detail.  The kidney was thrown in the hopper because the contents of the slush machine were thrown in the hopper and the kidney was in the slush machine.  It still isn’t clear why the kidney was in the slush machine in the donor’s operating room (rather than being transferred immediately to the recipient’s room), but more information regarding the disposal is now available.

The nurse disposed of the hopper because she was unaware that  the slush machine contained the kidney.  The nurse had been on lunch break when the location of the kidney was announced and was not briefed on the status of the operation upon her return.  There was no documentation on where the kidney was located, and the nurse assumed that it was in the recipient’s room.  For reasons that are unclear (as it is usually the job of the technician who is responsible for the machine), the nurse decided to empty the slush machine while the operation was still ongoing.  This appeared to be against procedure, but the procedure had “exceptions” according to staff, and was ineffective in this case.  The technician that was responsible for the slush machine was exerting inadequate control, as the staff members have stated that no one noticed the nurse empting the slush machine.  This also demonstrates inadequate control of the kidney, since there appeared to be no staff person responsible for the kidney itself.

Since the incident, the hospital has developed a procedure for intra-operative hand-off, which includes a briefing requirement for staff members who enter an operating room mid-procedure.  Additionally, clarification has been provided that nothing will leave an operating room until the patient has left, post-procedure.  Although the transplant program is still shutdown pending investigation, a recommendation that might reduce this type of problem in the future would be to ensure that a staff member is designated as responsible for any donated organs from removal to transplant.

To view the updated Cause Map and potential solutions, please click “Download PDF” above

Safe Use of Opioids in Inpatient Hospitals

By ThinkReliability Staff

The use of opioids for pain relief in inpatient hospitals can lead to serious potential adverse effects, including respiratory depression and drug interaction.  On August 8, 2012, The Joint Commission published a Sentinel Event Alert: “Safe use of opioids in hospitals”.  The alert contains information about potential causes of the adverse effects possible with the use of opioids as well as solutions that, if implemented by healthcare facilities, can reduce the risk of patient safety impacts from the use of opioids.

We can present the information provided by The Joint Commission in a Cause Map, or visual root cause analysis.  We begin with the impacts to the goals.  In this case, we look specifically at two potential impacts to the patient safety goal – the risk of drug-drug interactions and respiratory depression involving opioids.

Drug-drug interactions can result when a patient is taking another drug that interacts with opioids. In this case, the provider prescribing the opioid is unaware of the potential interaction between the drugs prescribed or is unaware of the patient’s drug history, because a complete history is unavailable and a patient is either unable or unwilling to provide a compete list. While drug-drug interactions are possible with any level of opioid, the over-use of opioids for pain relief is a particular concern.  Opioids can be effectively used for pain relief, but over-use can occur when a high dose is needed to manage pain, either due to tolerance from chronic conditions or patient abuse, or obesity.  Studies have shown that obese patients may require more opioids for pain relief than would be suggested by their weight alone.  A patient receiving the wrong dose of opioids (besides being an issue in itself) can also contribute.  Issues have been raised regarding the difficulty in calculating doses with drugs of different potency, especially as patients move from one drug to another.  Additionally, prescribing dose based on weight alone can result in a higher or lower dose than needed as the proper dose of opioids is subject to patient weight, age, sex, and tolerance level.

Issues with prescribing the wrong dose or wrong type of medication can occur when a patient or family member is responsible for the administration.  Problems with medication administered by a provider typically occur around changes of the type or delivery method of the pain killer.  Special care should be taken to recalculate the dose  corresponding to any change in the drug dosage, type or delivery method.  Similar-looking bottles and similar-sounding names are always a potential pitfall in proper drug administration and special care should always be taken in these cases.

Opioids reduce respiratory rate, which can result in respiratory depression.  Respiratory depression can be impacted by other factors, such as a patient who is sleeping (most respiratory depression occurs during typical sleeping hours), or who is already pre-disposed to respiratory depression.  This most commonly occurs with post-surgical patients (who may have residual anesthesia), old or young patients (who may be affected more greatly by the respiratory effects), patients who have abnormal respiratory control due to obstructive sleep apnea or morbid obesity, patients with supplemental oxygen and patients who have a self-administered drug delivery system, such as a fentanyl patch.  Special care and monitoring should be taken with patients who have a higher risk level for respiratory depression.

However, monitoring for respiratory depression is difficult.  Visually assessing respiratory depression (especially while a patient is sleeping or on supplemental oxygen) is extremely difficult.  Using pulse oximetry can result in misleading values (including normal values while a patient is suffering from respiratory depression) and high false alarms.  Because respiratory depression occurs gradually, intermittent monitoring may not be sufficient to pick up on a patient’s decline.

There is no one-size-fits-all solution for reducing respiratory depression.  Rather, an individualized plan based on patient pain requirements and risk factors is shown to be the recommended way to reduce the risk of respiratory depression and ensure proper pain control for patients.

To view the Cause Map and recommended solutions, please click “Download PDF” above.  Or learn more from The Joint Commission Sentinel Event Alert.

Donated Kidney Trashed

By ThinkReliability Staff

On August 10, 2012, a living donor’s kidney was thrown out, instead of being transplanted as planned.  The incident was chalked up to “human error”, which is almost certainly part of the problem . . . but definitely not all of it.

This extremely rare, but serious, event is being analyzed by several oversight agencies, as well as a contractor hired by the medical center in Ohio where the event took place, to ensure that needed improvements are identified and put into place so this type of incident doesn’t happen again.  We can examine the currently known information in a visual root cause analysis, or Cause Map.  To do so, we begin with the impacted goals.

There are many goals that were impacted as a result of this error.  Firstly, the patient safety goal was impacted because the patient did not receive the transplanted kidney.  This can also be considered an impact to the patient services goal.  Three personnel from the hospital were placed on administrative leave as a result of the incident.  This results in an impact to employees.  The compliance goal is impacted because this event has resulted in a review by several oversight agencies.  The living kidney donor program is currently shut down for review, which can be considered an impact to the organization goal.  The kidney was disposed of improperly, which is an impact to the environmental goal.  (Medical waste has strict requirements for disposal.)   The loss of the donated kidney can be considered an impact to the property goal.  Personnel time was taken both to attempt to resuscitate the kidney and to participate in an independent review of the donor program.  These can both be considered impacts to the labor/time goal.

Once we have determined the impacts to the goals, we can ask “Why” questions to develop the cause-and-effect relationships that led to these impacts.  In this case, the patient did not receive a kidney transplant because the kidney was thrown out and because of concern about the kidney’s viability.  Part of this concern was the delay in actually finding the kidney, likely due to the fact that it was disposed of improperly.  The reason given by the medical center for the disposal of the kidney is “human error”.  However, there is ordinarily a support system involved in organ transplants that would minimize these types of errors.  Certainly the fact that the program has been stopped and three employees – at least one of whom was not directly involved in the transplant operation – were placed on administrative leave suggest that the organization is looking at more than just a screw-up by one person acting alone.

Specifically, the investigation should look at communication – was the nurse who disposed of the organ told it was destined for transplant?  Was there a surgical time-out immediately prior to the removal with the entire operating team that discussed the plan for the kidney?  Also the training and preparation of the surgical team should be investigated.  Had the team been properly trained and prepped for this type of surgery?  The fact that it was done frequently at this facility doesn’t mean that adequate training was in place.  What about the procedure for treatment and supervision of donated organs?  Donated organs have to be treated in a very particular way to ensure their viability for the transplant patient.  Who, if anyone, was responsible for ensuring that the organ was prepared in a proper way for transplant?  Were they involved in the surgical time-out?  Lastly, because an error was made with the disposal procedure, the procedure, training and communication regarding disposal of medical waste needs to be analyzed to ensure it is adequate. The hope is that by doing a thorough review – and improvement – of policies, procedures, training and communication at the facility, it will not only reduce the risk of this type of error, but provide improvement in many other aspects of the care provided as well.

To view the Outline and Cause Map, please click “Download PDF” above.

Delay in Treatment for Sepsis Results in Death of a Child

By ThinkReliability Staff

On April 1, 2012, a patient at a university medical center in New York died from sepsis.  The death was especially heartbreaking as the patient was 12 years old . . . and had been healthy just 4 days prior.  However, he had contracted a bacterial bloodstream infection (sepsis), which has a high mortality rate (nearly 40%, according to the United Hospital Fund) that grows with every passing hour.  (A study cited by the New York Times found that the survival rate decreases by 7.6% every hour before antibiotics are given.)  With response time so crucial to patient outcome, rapid action at every step of the process is required.

We can look at this incident in a visual root cause analysis, or Cause Map.  The purpose of this map is not to assign blame, but rather to discover and document causes in the hope of finding solutions to reduce the occurrence of this type of issue.

We begin with the impacts to the goals.  In this case, the patient safety goal was impacted due to a patient death.  Because of the high potential for emotional impact to providers, employees are also impacted.    The potential for a lawsuit is an impact to the organizational goal, and the initial misdiagnosis of the patient is an impact to the patient services goal.

We begin with the patient safety goal and ask “Why” questions to develop cause-and-effect relationships that will show all the causes of the incident.  The patient died of severe septic shock and insufficient intervention.  (Had intervention come earlier, the patient may have lived.)  The onset of the sepsis appears to have been a cut acquired at school, which was bandaged, but possibly not cleaned, likely due to the lack of severity of the initial injury.  Delay of treatment allowed the sepsis to overwhelm the immune system.  The treatment was delayed due to an initial misdiagnosis of dehydration.     Sepsis is particularly difficult to diagnose because many of its symptoms mirror symptoms of other more common ailments.  Information was not shared between providers – the child’s primary care pediatrician, parents, and the hospital staff, which may have contributed to the difficulty in diagnosis.  Test results taken at the hospital came in after discharge and were not shared by phone with the primary provider or parents.  Additionally, even after lab results from the hospital suggested that the white blood cell count was abnormally high, indicating infection, no action was taken.

From this very basic, high level map, at least four areas of specific improvement can be noted.  Protocol at the school for injuries that involve cuts – even if they seem minor – should include cleaning or disinfection.   The hospital should have – and follow – protocol for that specifies action to be taken upon receipt of lab results.   This protocol should include documenting and sharing test results with other providers and caregivers.  Because of the difficulty in diagnosing sepsis, and the importance of quick action, the United Hospital Fund is current developing a STOP Sepsis Collaborative, which aims to “reduce mortality in patients with severe sepsis and septic shock by implementing a protocol-based approach to case identification and rapid treatment”.  Ideally, implementation of the results of this collaborative will reduce the risk of patient death from a situation like this tragic case.

To view the Outline, event Timeline, Cause Map, and Solutions, please click “Download PDF” above.  Or click here to read more.

Medical Laboratory Errors

By ThinkReliability Staff

Surprisingly, many of what are considered laboratory errors do not actually occur in the lab.  But errors related to laboratory testing can negatively impact patient care.  We can look at the impacts and causes of errors related to diagnostic testing in a Cause Map, which allows us to visually diagram cause-and-effect relationships.

We begin this type of root cause analysis by determining the impacts to the organization’s goals.  In this case, because we want to consider all possible sources of diagnostic errors in a proactive analysis, we will look at the generic goals for an organization that provides healthcare.  Diagnostic errors can cause an impact to the patient safety goal because of the risk of impact to patient treatment.  Employees’ abilities to do their job is impacted because they may be receiving incorrect information from lab testing. There is a risk of impact to the patient’s treatment, which is an impact to the patient services goal.  Additionally, there is a risk of performing unnecessary treatment as a result of incorrect testing results, which could impact both the property and labor goals.

Once we have determined the impacts to the organization’s goals (and there may be more impacts for specific incidents involving diagnostic testing errors), we can ask “Why” questions to determine the causes that result in these impacts.  We will begin with the patient safety goal impact.  The patient safety goal is impacted because of the risk of an impact to a patient’s treatment.  This includes the possibilities of a risk of delayed treatment, risk of not receiving needed treatment, and a risk of unnecessary treatment.  Delayed treatment can occur from a delayed diagnosis, which could result from either delayed or incorrect testing results.

Delay of testing results can be caused by delayed reporting of results, potentially due to a lack of time requirement for reporting results and/or a lack of tracking these results.  A possible solution to delayed reporting of results can be to implement a standardized process for reporting results, which may include time limits or guidelines for reporting results.

Incorrect treatment – whether that is not getting needed treatment or receiving unneeded treatment – can result from an incorrect diagnosis.  An incorrect diagnosis can result from  an incorrect assessment of diagnostic testing.  An incorrect assessment can result from either an incorrect interpretation of laboratory test data or incorrect data from the lab testing.

Incorrect interpretation of lab testing can result from reports that are difficult to interpret, either due to a confusing layout or illegibility.  A solution to this is to have a standardized reporting form.   Other potential causes of incorrect interpretation include confusion of verbal reporting (such as over the phone) or results not being interpreted by a specialist.  Solutions that can reduce this confusion include providing reports electronically when available or repeating results when provided verbally, and making lab experts available for interpretation.

Three main reasons that incorrect data is provided as a result of lab testing is that the specimen is associated with the wrong person, possibly because a patient is misidentified, a specimen is mislabeled, or information is entered incorrectly into the computer.  Possible solutions are to use two patient identifiers and label the specimen in the presence of the patient.

Contaminated specimens can also cause incorrect testing results.  Specimens can be contaminated at collection, handling, or testing.  Any of these issues can be caused by insufficient quality control.  The risk of contamination can be minimized by a standardized quality control procedure.

Lastly, incorrect diagnostic data can result from the wrong test being performed.   This could occur due to equipment failure, an incorrect entry into the computer, or the wrong test being ordered.  More details about any specific incident can be added to the Cause Map based on evidence gathered in the course of an investigation.

To view the Outline and Cause Map, please click “Download PDF” above.  Or click here to read more.

Use of Contraindicated Clip Leads to Death of Kidney Donor

By ThinkReliability Staff

In 2011, a kidney donor in Texas bled to death after her renal artery became open.  Sadly, her death was associated with the use of clips to close the artery – rather than staples – even though the use of clips was contraindicated for this purpose.  The instructions that came with the clips said this, as did several warning letters sent from the manufacturer in previous years.

We can look at this tragic issue in a Cause Map, or visual root cause analysis.  We begin with the impacted goals.  Because of the patient death, the patient safety goal is impacted.  Emotional impacts from employees resulting from a patient death can be considered an effect to the employee impact goal.  The use of a device other than intended is a result to the patient services goal and is considered a “never event” (an event which should never happen), resulting in an impact to the compliance goal.  A lawsuit resulting from the patient death is an impact to   the organization goal.  A total of four kidney donors are known to have died as a result of using these clips.

We begin with the impacted goals and ask “Why” questions to understand the cause-and-effect relationships resulting in this tragedy.  The patient died from a massive, sudden bleed caused by the bleeding of the renal artery which was open.  The renal artery had been opened as part of the kidney donor surgery, and had been closed using clips that slid off the renal artery.  The stump remaining on the renal artery after this kind of surgery is too short to allow the clips adequate purchase, and the clips slid off.  The hospital staff was unaware that these clips were contraindicated for this use.  Although a warning was placed on the instructions for the clips, these instructions were not kept in the operating room.  Additionally, the manufacturer sent out several letters to hospitals warning them not to use these clips for kidney surgery.  However, at that time, this hospital was not using the clips, and had forgotten about the letters when the clips were purchased.

Once the causes related to the issue have been captured, possible solutions can be brainstormed.  In this case, there are solutions for all the stakeholders in the event.  The operating team should use staples instead of these clips to close the renal artery.  The FDA has issued a safety notification to attempt to provide additional warnings against using these clips after kidney donation.  The hospital has implemented a system to track and document warnings and recalls related to medical equipment.  Some personnel in the medical community have requested that the warning not to use the clips after kidney surgery are printed directly on the clips, rather than on the operating instructions.  Dr. Amy Friedman, the Director of Transplant Services at Upstate Medical University in New York, who had raised concerns about using clips in kidney donors starting in 2004, would also like the warnings to include information that donors have died as a result of using these clips.  Although the FDA believes that the warnings up to this point have been sufficient, hopefully the additional actions will prevent another death from the use of these clips.

To view the Outline, Cause Map, and Solutions, please click “Download PDF” above.  Or click here to read more.