Category Archives: Never Event

Healthy kidney removed by mistake

By Kim Smiley

The Patient Safety Network presented a case study where a patient with suspected kidney cancer had the wrong kidney removed.  Instead of the right kidney that showed suspected renal cell carcinoma in a CT scan, the healthy left kidney was removed. A second surgery was then performed to remove the right kidney and the patient was left dependent on dialysis after losing both kidneys.  The patient wasn’t a candidate for a kidney transplant because of the cancer.

Reviewing and understanding case studies such as this one is important because wrong-site surgeries are one of the more common serious medical errors.  A Cause Map, a visual root cause analysis, can be used to better understand the many causes that contributed to this wrong-site surgery, and better understanding the causes of an incident leads to development of better solutions.  The first step in building a Cause Map is to fill in an Outline with the basic background information.  These details are often not published for medical errors to protect patient privacy, but the information should be recorded if available.  The bottom of the Outline also includes space to list how the issue impacts the overall organizational goals. The Cause Map itself is built by starting at one of the impacted goals and asking “why” questions.

Focusing on the patient safety goal as a starting point, the investigation could be started by asking “why was a healthy left kidney removed instead of the right?” The surgeon who performed the surgery believed the tumor was in the left kidney because all patient information readily available stated the tumor was in the left kidney.  The case study didn’t include details on how this error in the patient’s record occurred, but it is known that a CT scan was initially performed at a different hospital than the one that performed the surgery.  The patient sought treatment at the first hospital after suffering from abdominal pain and hematuria and a CT scan was performed.  He was transferred to a second hospital for the surgery after the CT scan revealed suspected renal cell carcinoma.  An image of the CT scan was not included with the patient records at the time of transfer and the records noted that there was a tumor in the incorrect (left) kidney.

The stage was essentially set for a wrong-site surgery and the surgeon missed the opportunity to prevent it.  The surgeon chose to perform the surgery based on the records without either verifying the original CT (because it was not available) or requesting an additional CT scan to be performed to confirm the diagnosis.  It does not appear that the surgeon was required to review the CT scan, but the decision on whether to do so was left up to the surgeon’s judgement. The error was only identified after the pathologist who examined the left kidney found no evidence of cancer and informed the surgeon who then reviewed the original CT scan and realized the wrong kidney had been removed.

Once the causes that contributed to an issue have been identified, the final step in the Cause Mapping process is to identify and implement solutions to prevent a problem from reoccurring.  One way to prevent similar errors is to require labeled radiology images to be available to the surgeon prior to any surgery.  Requiring a review of images prior to the surgery would build in a double check to ensure the surgery is performed at the correct site.  Building in a double check of medical records may also reduce errors like the wrong kidney being listed as potentially cancerous or a patient being transferred with medical files missing important radiology images.

Use of Contraindicated Clip Leads to Death of Kidney Donor

By ThinkReliability Staff

In 2011, a kidney donor in Texas bled to death after her renal artery became open.  Sadly, her death was associated with the use of clips to close the artery – rather than staples – even though the use of clips was contraindicated for this purpose.  The instructions that came with the clips said this, as did several warning letters sent from the manufacturer in previous years.

We can look at this tragic issue in a Cause Map, or visual root cause analysis.  We begin with the impacted goals.  Because of the patient death, the patient safety goal is impacted.  Emotional impacts from employees resulting from a patient death can be considered an effect to the employee impact goal.  The use of a device other than intended is a result to the patient services goal and is considered a “never event” (an event which should never happen), resulting in an impact to the compliance goal.  A lawsuit resulting from the patient death is an impact to   the organization goal.  A total of four kidney donors are known to have died as a result of using these clips.

We begin with the impacted goals and ask “Why” questions to understand the cause-and-effect relationships resulting in this tragedy.  The patient died from a massive, sudden bleed caused by the bleeding of the renal artery which was open.  The renal artery had been opened as part of the kidney donor surgery, and had been closed using clips that slid off the renal artery.  The stump remaining on the renal artery after this kind of surgery is too short to allow the clips adequate purchase, and the clips slid off.  The hospital staff was unaware that these clips were contraindicated for this use.  Although a warning was placed on the instructions for the clips, these instructions were not kept in the operating room.  Additionally, the manufacturer sent out several letters to hospitals warning them not to use these clips for kidney surgery.  However, at that time, this hospital was not using the clips, and had forgotten about the letters when the clips were purchased.

Once the causes related to the issue have been captured, possible solutions can be brainstormed.  In this case, there are solutions for all the stakeholders in the event.  The operating team should use staples instead of these clips to close the renal artery.  The FDA has issued a safety notification to attempt to provide additional warnings against using these clips after kidney donation.  The hospital has implemented a system to track and document warnings and recalls related to medical equipment.  Some personnel in the medical community have requested that the warning not to use the clips after kidney surgery are printed directly on the clips, rather than on the operating instructions.  Dr. Amy Friedman, the Director of Transplant Services at Upstate Medical University in New York, who had raised concerns about using clips in kidney donors starting in 2004, would also like the warnings to include information that donors have died as a result of using these clips.  Although the FDA believes that the warnings up to this point have been sufficient, hopefully the additional actions will prevent another death from the use of these clips.

To view the Outline, Cause Map, and Solutions, please click “Download PDF” above.  Or click here to read more.

Patient Deaths Caused by Defective Defibrillator Wires

By Kim Smiley

A recent study determined that at least 20 patients have died as a result of defective defibrillator wires.  The wires, also called leads, connect the defibrillator to the heart to both monitor heart rhythms and deliver electric shock if needed.  Defective defibrillator wires have the potential to affect many people since more than 79,000 in the United States and 49,000 abroad have the implants.

This issue can be explored by building a Cause Map, an intuitive, visual root cause analysis method.  To begin a Cause Map, the first step is to determine what the impacts have been on the overall organizational goals.  In this example, the safety goal will be focused on since the study determined at least 20 patients have died as a result of this issue.  Once the impact to goals is found, the Cause Map is built by asking “why” questions and adding the information.

In this case, the patients died because their heart stopped.  The heart stopped because the patients were at risk of heart issues, had defibrillators implanted and the defibrillators malfunctioned.  Implanting defibrillators is a common treatment for certain heart conditions and many people have them.

The defibrillators malfunctioned because the wires used to connect the defibrillator to the hearts weren’t properly insulated and a short circuit developed, preventing the defibrillator from shocking the heart when it was needed.  The wires aren’t properly insulated because the silicone coating on the wires is breaking down over time.  The defibrillators are also malfunctioning because the issue with the wires isn’t one that can be found by routine monitoring so the problem isn’t identified until it’s too late.

The company that makes the wires is questioning the findings of the study and says that the information used was incomplete.

It’s also not clear at this time what the best course of action is at this time beyond continuing to monitor patients.  Removing the wires is considered to be a risky operation.

To view a high level Cause Map of this issue, click “Download PDF”.

Infant Death Due to Sodium Chloride Overdose

By ThinkReliability Staff

On October 15, 2010, a 40-day old prematurely born infant died from a sodium chloride overdose at an Illinois hospital.  Because a computerized system was involved, this case has been noted as a harbinger for possible issues resulting from the use of computerized systems.  To learn more about what happened, we can look at the case in a visual root cause analysis, or Cause Map, to examine all the causes.

First we begin with the impact to the goals.  The infant’s death was an impact to the patient safety goal.  A death resulting from a medication error is a “never event“, which is an impact to the compliance goals.  There is a related wrongful death lawsuit, which is an impact to the organization’s goals.  The overdose of sodium chloride delivered to the patient is an impact to the patient services goal.

We begin the analysis with the impacts to the goals and ask why questions to fill out the Cause Map.  The infant death was caused by the sodium chloride overdose, which occurred when the infant received more than 60 times the dosage ordered by the doctor intravenously.   The infant was receiving sodium chloride intravenously to provide nutrition, as he had been born prematurely.  Although a blood test indicated abnormally high levels of sodium, it has been reported that the lab technician assumed they were inaccurate, resulting in the infant not receiving immediate care for the overdose.

When a process – in this case, the medication delivery process – does not work correctly (such as occurs when an overdose is given), it means that the checks at every level of the process were ineffective.  The final check at the patient’s bedside was ineffective because the label on the IV bag did not match the actual contents.  It’s unclear how that occurred.  The error was made at the pharmacy, when a pharmacy technician entered an incorrect number into the compounding system.  Normally entering a too-high dose would trigger an alert with an automated system, but the alerts were turned off.  Part of the reason for the error was that the pharmacy technician had to manually enter the prescription in the first place.   A  doctor enters a prescription via the automated dispensing system.  However, the automated dispensing system, and the computerized compounding system did not communicate with each other, so for orders that required compounding, a technician had to transfer the order from one system to the other, manually.

A computerized system is no better if it’s not used properly.  If parts of the system don’t communicate with each other, and safety checks are turned of, a computerized system may actually be less safe, especially if people expect the automatic checks are being performed, and so don’t perform any of their own.  Computerized systems have a lot to offer – namely, reducing the number of medication errors relating to illegible handwriting or providing automatic checks for drug interactions.  But these systems are not fail-safe and checks used to ensure that patients

Preventing Central Line Infections

By ThinkReliability Staff

Central line infections, also called central line-associated bloodstream infections (CLASBI), can occur when a large tube is placed in a large vein in the neck, chest, groin or arms to give fluids, blood, or medications or to do certain medical tests quickly.  While they allow exceptional access to internal systems, Central Venous Catheters (CVC) also can cause thousands of patient deaths a year and add billions of dollars in healthcare costs.  However, these infections are entirely preventable.

In this health care scenario, patient safety is the foremost concern.  So the most basic Cause Map would show that the Patient Safety Goal is impacted by preventable bloodstream infections, and that those infections come from pathogens introduced by a central line.  The next step is to elaborate on how pathogens enter the bloodstream, and then determine what appropriate solutions might be.

Preventable bloodstream infections happen because pathogens access the bloodstream and also because the infections aren’t treated early on.  This suggests that by treating infections early on, and vigilantly watching for signs of infection, more serious infections can be prevented.

Pathogens can access the bloodstream because a central line provides a direct conduit to the bloodstream and because pathogens are present.  Again, while these are obvious statements, they allow the opportunity to develop potential solutions.  First, the CDC recommends not using a CVC unless absolutely necessary.  Additionally, CVCs shouldn’t be placed in the femoral artery in adults because it is associated with greater infection rates and secondary problems such as deep venous thrombosis.

Assuming a central line is necessary; more analysis leads to further solutions that might reduce the presence of pathogens.  Pathogens generally come from two sources – the line was improperly put in or somehow the line became contaminated during use.  Using antimicrobial materials is one potential way of minimizing contamination.

Looking closer at the uppermost branch , how the line was put in, leads to some insightful solutions.  One simple solution recommended by the CDC is to use a checklist and follow their guidance.  Checklists are a simple but highly effective way of reducing errors in repetitive processes.  There are two major causes in this branch, dirty hands/gloves from the nurse or doctor putting the CVC in the patient and the patient having dirty skin at the site of the CVC.  CDC guidance also recommends using maximal barriers such as masks and gloves and washing your hands.  Cleaning the patient’s skin with a chlorhexidine-based solution is another important step that can reduce these infections.

With so many possible solutions, it is important to identify where changes need to occur in your own processes.  This is fairly simplistic Cause Map and there are many other solutions suggested by the CDC and other government health agencies.  For more information on steps to reduce CLASBIs, see the U.S. Department of Health and Human Services Guideline.

Surgery Performed on Wrong Eye

By Kim Smiley

There are few medical errors scarier than a wrong site surgery.  The idea that you could go to sleep and wake up having had a procedure performed on the wrong body part is terrifying.  Unfortunately, this is exactly what happened to a family in Washington recently.

On April 13, 2011, a surgeon performing a routine procedure to correct a wandering eye mistakenly operated on the wrong eye of a four year old boy.  In this case, the wandering eye was caused by a muscle that was too strong so the surgery was performed to weaken the muscle.  It’s unclear at this point whether the wrong site surgery will have any lasting impact on the patient’s vision, but the patient’s mother has stated that the previously healthy eye is now wandering.  A specialist who examined the boy post-surgery stated that the eye needs to completely heal (about 5 weeks) until any determination can be made about long term consequences.

How did this happen?  How does a surgeon perform a procedure on the wrong part of the body? And most importantly, how do we prevent these types of errors in the future?

The investigation of this incident is still ongoing, but a Cause Map of the incident can be started and then expanded as more information becomes available.  A Cause Map is a visual root cause analysis that lays out the causes of an incident in an intuitive format.  Once the Cause Map is complete, it can be used to develop solutions to help prevent future problems. Click on “Download PDF” above to see an Outline of this incident and the initial Cause Map.

In this example, it isn’t clear yet how the mistake was made.  Findings from the investigation so far have determined that the correct eye was marked before surgery, but statements by the surgeon indicate that the mark may have been accidentally covered by a nurse. The hospital has protocols in place that require checking and double checking the surgery site, but it’s not clear why they weren’t followed.  Once the investigation is complete, the hospital will determine what solutions need to be implemented to ensure that this doesn’t happen again.

Patient Physically Assaulted

By ThinkReliability Staff

On June 24, 2010, a patient at a Maryland Hospital was physically assaulted by security guards after trying to leave the hospital.  A patient who is injured or killed due to physical assault is one of the ‘Never events’, i.e. medical events/errors that should never happen.

We will look at the causes of this event in a Cause Map, or visual root cause analysis.  The information used to put together this analysis is from the legal filing.

On June 23, 2010, a man (who we’ll call “the patient”) was in a serious car accident and was airlifted to a Maryland Hospital.  He woke up the next day, after receiving treatment for blunt torso trauma and chest pain and asked for something to eat.  After some confusion, the patient realized that his identification bracelet was not his – it identified a female patient 13 years his junior.  At this point, he decided to leave the hospital and was stopped with a verbal and physical exchange with several security guards.  He eventually was able to leave successfully, and was treated at a second hospital for broken ribs, a sprained shoulder, a ruptured spleen, and a concussion.

As mentioned before, physical abuse of a patient is a “Never event”, and is an impact to the compliance goal.   More importantly, there was injury to the patient, resulting in an impact to the safety goal.   Because the patient was wrongly identified as needing surgery to remove a cancerous mass, there was the potential for the patient receiving unnecessary surgery, also an impact to the safety goal.  The patient has taken legal action against the employees involved (Employee Impact goal) and has filed a lawsuit against the hospital for more than $12 million (an impact to the organizational goal).   The misidentification of the patient can be considered an impact to the patient services goal.

We begin our Cause Map with these impacted goals.  The patient was beaten because employees were trying to restrain the patient to keep him from leaving, and restrained him in an inappropriate manner.  The employees were trying to get the patient to stay because they believed he needed surgery because he was misidentified.  At this point, the hospital involved should be asking “Where did our identification procedure go wrong?”  The next step in the investigation should be to look at the identification procedure to determine specifically which steps allowed the misidentification to happen.  Only once this is determined can appropriate corrective actions be taken to prevent future misidentifications.

Another area that requires more analysis is the patient restraint procedure.  The security guards in this instance were attempting to restrain the patient to prevent him from leaving.  However, they did this in an inappropriate manner.  The question is, why?  Were the guards not following the existing restraint procedure? If not, why not?  Or, is there no procedure for restraint?  Were the restraint expectations not clearly provided to the guards?  Again, until the specific breakdowns leading to this incident are uncovered, corrective actions will be generic and may not be effective.  To view a one-page PDF showing the investigation at this point, click on “Download PDF” above.

Feeding Tube Misconnection Results in Patient, Fetus Death

By ThinkReliability Staff

Recent articles have related several stories of patients being injured or even killed by medical tubing mix-ups.  A product used other than intended that results in a patient death is one of the “Never Events” – events that should never happen at healthcare facilities.   An article in The New York Times discusses injuries and deaths caused by accidentally connecting food meant for a feeding tube through an intravenous (IV) line.    A specific incident mentioned in the article can be analyzed in a Cause Map to capture all of the causes in a simple, intuitive format that fits on one page.

In this case, a pregnant woman was prescribed a feeding tube to ensure that she and her baby were getting adequate nourishment.  The feeding tube was improperly connected to the intravenous (IV) line, causing liquid food to enter her veins, causing sepsis which killed her and her fetus.

One issue (cause) is that medical personnel made an incorrect connection.  Although there was no information given in the article, this would certainly be an area for the responsible organization to look at in more detail and determine if there are steps that can be taken to reduce the risk of these types of errors.  (Some organizations have found success with color coding the tubes, for example.)

However, another issue is that the tubes COULD be incorrectly connected in the first place.  The number of errors in feeding tube connections (discussed in an article from The Joint Commission Journal on Quality and Patient Safety) has led the U.S. Food and Drug Administration (FDA) to consider declaring these products unsafe.

The tubes become compatible with other tubing connections (such as IV) when needle-free connectors were adopted, to increase caregiver safety (by limiting exposure to needles).  Since then, there have been issues with the compatible tubing.  (A history of tubing issues is found on the PDF, which can be downloaded by clicking “Download PDF” above.)   And, feeding tube connections that are incompatible with other tubing lines are difficult to find.  There are many causes given for the delay of developing incompatible tubing, including resistance from the medical industry, difficulties with the FDA approval process, and a delay in forwarding requirements for incompatible tubing.  This delay is mainly attributed to waiting for an international group to develop a recommendation regarding tubing, which is expected to take several years.

The FDA has an expedited review process which allows approval of a device if it works like an already approved device, regardless of whether that device is safe, or has been recalled.  Because compatible tubing devices have already been approved, new devices that use the same – compatible – connection can go through this expedited process, whereas incompatible connections can not.  Without federal agencies requiring change, it’s been difficult getting manufacturers to update their products.

View the problem outline, Cause Map, and timeline of tubing issues by clicking “Download PDF” above.

Cardiac Arrest Due to Leaky Equipment

By ThinkReliability Staff

A patient death associated with equipment that does not perform properly is one of the “Never Events” (i.e. events that should never happen).  A case where a leaking piece of equipment caused the cardiac arrest of a child is described by the ECRI Institute.  We can record this information in a Cause Map, or visual root cause analysis in order to show the relationships between the causes and suggested solutions.  The root cause analysis investigation can be seen by clicking on “Download PDF”.

Because a patient suffered cardiac arrest, there was an impact to the patient safety goal.  We begin this impacted goal and ask “Why” questions to add more causes to the Cause Map.  The cardiac arrest was caused by suffocation.  The suffocation was a result of undetected excessive carbon dioxide (CO2) levels.  The levels were undetected because the child was under anesthesia (thus making it difficult to judge the breathing air quality) and because there was no device to detect high CO2 levels.  The CO2 levels were high due to rebreathing.  (The high CO2 levels were an impact to the patient services  and environmental goals as well.)

The rebreathing occurred because of a lower than normal fresh gas (breathing oxygen) flow.  With a breathing system of this type, the rebreathing (or taking in exhaled CO2) is inversely proportional to the fresh gas flow.  As the gas flow decreases, the rebreathing increases.  The reduced fresh gas flow was caused by a leaky humidifier.  (The leaky humidifier can be considered an impact to the property goal.)  The leaky humidifier was caused by an unrepaired pressure drop through the gas flow passages.  The pressure drop was caused by an inadequate seal on those passages due to two (of four) loose screws that were apparently not noticed.

The leak had been detected during the pre-use test of the equipment.  The leak was believed to be repaired, but instead of performing another pre-use test of the equipment, the system was put together, and a test was done on the whole system.  The system has a higher allowed leak rate than each individual piece of equipment, so the fact that the leak was not in fact repaired was not noticed.

Some of the suggestions given by ECRI Institute to prevent this kind of incident from recurring are to install a CO2 detector on the breathing circuit, ensure the anesthesia equipment is on a regular inspection and maintenance program, and to redo individual equipment tests after repairs.

Patient Death from Restraint

By ThinkReliability Staff

A patient death associated with the use of restraints is a “never event” as defined by the National Quality Forum (NQF).  A recent death at a St. Louis, Missouri hospital has placed the hospital at risk of being terminated from the Medicare program after two other recent patient deaths associated with restraints and inappropriate patient seclusion.

In order to shed some light on the issues surrounding this most recent death, we can begin sifting through the facts in a root cause analysis.  First, we enter the necessary information into the outline, including the impact to the goals (to view the outline, timeline and Cause Map, please click on download PDF above).  The impacts to the organization’s goals begin the Cause Map, or visual root cause analysis.  We can continue to add more detail to the Cause Map by asking “Why” questions.

We will then discover that the patient died of suffocation.  An early concern was that the patient’s airway was blocked by gum, but the doctor determined that was not the case.  (We can leave this cause on the Cause Map but can cross it out once it has been determined that it did not contribute to the incident.)  The patient suffocated when she was left facedown on a beanbag chair, after being given a sedative that slowed her breathing, and was not properly monitored for breathing or a pulse.    The patient had been restrained and sedated after threatening and assaulting the hospital staff.  The patient was not constantly supervised, as suggested, possibly due to a lack of staff.

When the charge nurse arrived several minutes later and determined the patient was not breathing, resuscitation was not immediately begun (either mouth-to-mouth or CPR). She first left to get a light, then a stethoscope, then to find the patient’s nurse.  After the patient’s nurse returned, she left to call a “Code Blue”.  The first aide that arrived was told not to begin CPR or mouth-to-mouth because there was no breathing mask.  She did anyway.  Nine minutes later, the doctor inserted a breathing tube.  The staff attempted to restart the patient’s heart but were unsuccessful and she was pronounced dead.

To determine what actions can be taken so that this never happens again, first we have to do a little more research into a few specific areas.  First there needs to be a thorough investigation on the restraint procedure at this hospital.  Because a patient died in restraints, some aspect(s) of the restraint procedure must be improved.  To improve the procedure, however, first we have to know what the hospital staff  actually did, step by step, in this case (and others).  Then we should look at expectations and/or requirements for supervision of patients who are being restrained, or given sedatives, or who, based on their behavior, require constant supervision.  For example, patients who are held facedown need extra supervision to make sure their breathing is not constricted.  Additionally, it may be appropriate to turn the patient back face up once the sedatives begin to work.

The patient’s death was caused in part by the delay in resuscitation.  Beyond the delay in recognizing the patient’s respiratory distress, the expectations for staff in this situation need to be addressed.  Because the charge nurse was fired, it seems that the hospital did not think she properly performed her expected duties, but why?  Perhaps the staff does not understand what they should do in this case, or doesn’t have the necessary equipment (such as a breathing mask) readily available.  Although refresher training might be in order, we don’t stop there.  We need to figure out all the things that are keeping our staff from being able to do what they need to for their jobs and remove those obstacles – BEFORE this happens again.

To view the outline, timeline and Cause Map, click on “Download PDF” above.  To learn more about this incident, please see the news story.