Tag Archives: cause mapping

Solving the Problem of Organ Donation

By ThinkReliability Staff

6,570 Americans die every year waiting for a donor organ.  Says Johns Hopkins surgeon Dr. Andrew Cameron, “There just aren’t enough organ donors to go around.  That’s not a medical problem.  That’s a social problem.”  Though 95% of people support organ donation, only 40% are registered organ donors.  For the over 123,000 people on the waiting list, there just aren’t enough donor organs to go around.

This issue can be addressed within a Cause Map, a visual root cause analysis.  The first step is to capture the “what”, “when”, and “where of the incident, as well as the impact to the goals.  In this case, the problem is lack of donor organs available, causing patient deaths.  Though the problem exists everywhere, the focus of this blog will be on ongoing organ shortage in the United States.  Important differences in the United States related to organ donation are that only 40% of Americans are registered organ donors (despite widespread public support), and that there is no central registry of organ donors within the United States.  (Organ registries are typically state-run.)

The large number of deaths resulting from inadequate donor organs is an impact to the patient safety goal.  The delay in receipt of organs can be considered both an impact to the patient services and schedule/operations goal.  The lack of available organs can be considered an impact to the property goal.

To develop the cause-and-effect relationships that led to the impacted goals, we ask “why” questions.  In this case, the patient deaths result from the need for donor organs due to disease or injury, and the delay in receipt of organs.  The delay in receipt of organs is due to a lack of available organs.  Millions of Americans die every year, and while not all organs are acceptable for transplant, more than one organ can often be used from donors, resulting in multiple lives saved from each donor.

In an interesting cause-and-effect result, increased traffic safety has resulted in fewer fatal traffic accidents of young, healthy people, which has led to a decrease in available donor organs.  Of course there is no effort to try and increase organ donation by stopping the decrease of deaths of young people.

The shortage of donors from people who are eligible (upon death or brain death) result from not signing up for the organ donation registry and/or from a family not choosing to donate organs.  There are multiple reasons suggested for people not choosing to register or donate organs.  To solve the problem, companies are working on increasing the number of donors.  Dr. Cameron coordinated with Facebook to allow users to register as organ donors and saw the number of organ donors go up “22 fold”.  Says Dr. Cameron, “That’s proof that we can move the needle.”  The startup Organize is “building a portfolio of technology that makes it easier for people to demonstrate their desire to be an organ donor.”  The company hopes that it will improve organ donation to the point that it puts itself out of business in five years.

To view the overview of the organ donation problem and solutions, click on “Download PDF” above.  As discussed in a previous blog, work is also being done to increase the number of organs that are acceptable for donation (in this case with kidneys).

Scientists Moving a Lab Find Forgotten Smallpox

By Kim Smiley

On July 1, 2014, vials marked “variola”, the virus that causes smallpox, were found when a fridge was being cleaned out as part of the effort to move a National Institutes of Health campus to a new location. The vials were immediately secured and a CDC team was dispatched to retrieve the vials. No exposure to smallpox is suspected, but the discovery is still alarming. There are only two heavily secured locations where smallpox is supposed to exist in the world so the fact that vials of a dangerous virus were just sitting forgotten in a fridge has raised many issues that that should be investigated.

This issue can be analyzed by building a Cause Map, a visual root cause analysis method.  To build a Cause Map, the problem is first defined by identifying impacts to the overall goals and then “why” questions are asked to lay out all the causes that contributed to an issue to show the cause-and-effect relationships.  For this example, the safety goal was impacted because there was potential for a smallpox outbreak.  This would be the first box on the Cause Map and more boxes would be added by asking “why”.

So “why” was there potential for a smallpox outbreak?  This occurred because there was a potential for people to be exposed to the smallpox virus and the population has little to no immunity to smallpox.  There was potential for exposure to smallpox because “lost” vials of smallpox were in a fridge in an unsecured lab.  The vials, which were created in 1954, appear to have been in the fridge a long time and somewhere along the way, their presence was forgotten.  Smallpox can survive in refrigeration for a long time and testing has shown that the virus was still viable.  The general population has little immunity to smallpox.  The last smallpox case in the United States was in 1949 and the US stopped vaccinating for smallpox in 1972.

The final step of the Cause Mapping process is to use the Cause Map to develop and implement solutions to  reduce the risk of a similar problem occurring in the future.  In this example, the immediate problem was addressed by moving the vials to a secured lab.  Once scientists are done studying the vials, the contents and all traces of the virus will be destroyed.  Longer-term solutions will likely include ensuring that all  government laboratory storerooms are inventoried to ensure that no other potentially dangerous vials have been “lost”.  Inventory procedures should also be reviewed to ensure they are adequate.

To me, the most worrisome part of this issue is that the vials were only discovered because workers were moving the lab to a new location. It naturally raises questions about what else might be out there and how frequently inventory is happening, or not happening as the case may be.   Investigation into this incident has already uncovered a number of other vials filled with potentially dangerous specimens in the same storage facility.   If any other potentially dangerous vials are “lost” in other locations, I hope we find them before 60 years have passed.

To view a high level Cause Map, click on “Download PDF” above.

Fire Door Falls on Dementia Patient

By ThinkReliability Staff

On November 7, 2013, during renovation taking place at a care home in Moston, Great Britain, staff responded to a cry for help, finding a resident underneath a fire door that had been removed and leaned against a wardrobe during the remodeling work.  The resident suffered a broken hip and died on December 2nd.  The management trust that operated the care home and the renovating firm were both fined under the Health and Safety at Work Act after a Health and Safety Executive (HSE) investigation found that the renovation area, which contained multiple hazards, had been left unlocked the night before.

According to HSE Inspector Laura Moran, “Both firms clearly knew there were vulnerable residents living at the care home but they still allowed the door to what was essentially a building site to be left unlocked on numerous occasions.”  Clearly multiple failures led to the resident’s death.  Diagramming the cause-and-effect relationships related to this issue can help clarify what happened, and offer areas for improvement.

We can perform an analysis of this incident in a Cause Map, or visual root cause analysis.  We begin with the impacted goals.  The patient safety goal was impacted due to the death of the patient.  In addition, the employee safety goal was impacted due to the potential for employee injury.  The fines can be considered an impact to the compliance goal and the patient services goal is impacted due to the insufficient protection provided for residents.

Beginning with an impacted goal and asking “why” questions develops the cause-and-effect relationships.  In this case, the patient death resulted from a broken hip.  The broken hip resulted from the patient being crushed under a fire door.  (It took 3 people to lift the fire door off the patient.)  The patient was crushed under the fire door because the fire door fell and the patient was in the renovation area where the fire door was located.  Both of these causes are required – had the fire door not fallen, the patient would not have been crushed, even if she was in the renovation area.  If the fire door fell but the patient was not present, the patient also would not have been crushed.  When both causes are required to produce an effect, the causes are joined by and “and” on the Cause Map.

The fire door fell as it was leaning against a wardrobe due to the renovation.  The patient, who suffered from dementia, was prone to wandering and was able to access the area under renovation because it had not been locked.  Neither the renovation firm nor the care home staff locked the area, or checked to verify that it was locked.

Other goals can be added as effects in the appropriate locations of the analysis.  For example, the patient services goal was impacted due to the insufficient protection of patients.  This occurred because the renovation area was unlocked and because the hazards in the renovation area.  (Beyond the fire door, the care home staff found exposed wiring, loose boards, and other potential safety hazards.)  The insufficient protection of patients resulted in the fine.  The impact to the employee safety goal was impacted due to the renovation area hazards as well.

Some amount of hazard always exists in construction sites – this is why hard hats are generally required.  It’s also why access to these sites is controlled.  In this case, limiting access to only those that need it was determined to be the best way to protect patients.  Because the previous process for ensuring the area was locked had failed, according to Inspector Moran, “Following the incident, the companies introduced a new procedure which meant workers had to collect and return a key at the start and end of each day, and lock the door when there was no one inside.”

The lessons learned from this tragedy are applicable not only to the specific situation of care homes undergoing renovation but to all those who have a need to protect a vulnerable population or limit access to a hazardous site to ensure safety.  Simple things like making sure doors are locked at the end of the day may save a life.

 

Alleged Radiology Misreading Results in Removal of Cancer Patient’s Healthy Kidney

By ThinkReliability Staff

On January 17, 2013, a radiologist discussed the results of a CT scan with an urologist.  The CT scans identified cancer in the kidney of an urologist’s patient.  Two months later, the patient underwent surgery to remove the kidney.  The kidney was examined by a pathologist, who declared it cancer-free.  The wrong kidney had been removed, allegedly due to a misidentification by the radiologist.

Wrong-site surgeries like this one can lead to severe patient safety consequences, as well as severe financial and regulatory consequences for the doctors and healthcare facilities involved.  This is why surgery performed on the wrong body part has been identified as a “never event“, or an event that should never occur in a healthcare facility.

Even with this designation and the known seriousness of the issues, wrong-site surgeries continue to occur.  The Joint Commission estimates that the prevalence of wrong-site surgeries in the United States is as high as 40 per week.

Clearly, action must be taken to reduce the risk of wrong-site surgeries.  To identify areas of potential improvement, it can help to look at an example of an actual case of wrong-site surgery to determine lessons learned.  We will examine the case of the wrong kidney being removed as an example of issues that can lead to wrong-site surgeries using the Cause Mapping method of root cause analysis.

It’s important to identify the impacts to the goals as a result of an incident.  In this case, the patient safety goal was clearly impacted as the patient now has only 3/4 of a kidney remaining, with the potential to cause serious health impacts.  (A portion of the cancerous kidney was removed in a later operation.)  The compliance goal is impacted because of the occurrence of a “never event” as discussed above.  The patient services goal is impacted due to the removal of the wrong (healthy) kidney.  The radiologist and urologist involved in the issue have been sued for more than $1 million as a result of the issue.  If all these issues received similar lawsuits, the costs to the health system would be over $2B a year.

Once the impacts to the goals are identified, asking “why” questions develops the cause-and-effect relationships that led to the issue.  In this case, the removal of the wrong kidney is alleged to have resulted from the radiologist misreading the CT scan that identified the kidney with cancer and passing that information on to the urologist who performed the surgery.  Clearly the urologist’s physical exam (if any) did not adequately determine the site of the cancer.

To better understand the steps that led to the surgery, they can be diagrammed in a Process Map.  A Process Map lays out a process in much the same way that a Cause Map visually lays out cause-and-effect relationships.  A very high level overview of the process used in this case is shown on the downloadable PDF.  What’s important to note is that an incorrect reading of a CT scan or other diagnostic tool propagates through the process.  With no second opinions or double checks built in, the diagnosis of cancer in the left kidney was the only information the urologist had to determine the operating site.

There are of course other errors in the surgical preparation procedure that can also cause wrong-site surgeries.  (Many of these errors are identified in our proactive write-up on wrong-site surgeries.)  As stated by Mark R. Chassin, M.D., President of The Joint Commission, “Wrong site surgery events occur basically because none of the processes that we use in taking care of patients is perfect.”  Equally important is that the people performing the processes are not perfect.  Although both processes and people’s performance can be improved, it will never reach perfection.  For this reason, adding double checks and second opinions into processes is essential to reduce the risk of the one mistake resulting in a devastating patient safety impact.  In this case, having a second opinion on the CT scan, or having the physician re-identify the area with a physical exam prior to surgery (if possible) may have identified the error prior to removal of a healthy kidney.

View the Cause Map and process map by clicking on “Download PDF” above.

“Artificial Pancreas” May Dramatically Improve Management of Type 1 Diabetes

By Kim Smiley

As many as 3 million Americans have type 1 diabetes and for many managing the autoimmune disease requires constant vigilance.  Patients have to carefully monitor what they eat and their blood sugar levels, often pricking their fingers and injecting insulin multiple times a day.  The number of people diagnosed with type 1 diabetes has been increasing, but there is some good news.  There is no cure for type 1 diabetes, but a new device, an artificial pancreas, may make managing the disease significantly simpler.

Type 1 diabetes is caused when the immune systems attacks insulin-producing cells in the pancreas so the body can no longer produce adequate insulin.  Insulin is needed because it works to allow sugar to enter cells where it is used for energy, reducing the levels of sugar in the blood stream.  Sugar builds up in the blood when food is consumed and from natural processes in the body.  Without enough insulin, blood sugar levels will continue to increase.  High blood sugar can damage major organs and can have significant impacts on long-term health.  Low blood sugar is also dangerous and can quickly become a life-threatening emergency so patients with type 1 diabetes are constantly working to keep blood sugar within acceptable levels.

The artificial pancreas works by monitoring blood sugar levels every 5 minutes and using two pumps to deliver two different hormones (insulin to lower blood sugar levels and glucagon to raise blood sugar) as needed with minimum intervention required by the user.  The current version of the artificial pancreas consists of three parts (two small pumps and iPhone contacted to a continuous glucose monitor) but there are plans to simplify the device in the future.  The components connect to three small needles that are inserted in the patient to allow blood sugar levels to be monitored.  Insulin pumps currently used by many type 1 diabetics can only inject insulin and require more input from the user, so the artificial pancreas is a significant improvement over currently available technology.

The artificial pancreas is still in the development stage and needs additional testing and modification prior to becoming widely available for patient use.  The first test was done using about 50 patients (20 adults and 32 teenagers) who wore the new device for 5 days.  The results were very promising, but more testing will need to be done. During the 5-day test, the patients had lower blood sugar levels overall and the device simplified management of the disease.  Researchers reported that the patients didn’t want to return the devices because they worked so well. The next step is to have patients use the device for a longer time period.  It’s essential to ensure that the device is very robust, because the consequences can be dire if it fails.  Once the design is finalized, the hope is to seek FDA approval and have the artificial pancreas available in about 3 years.

To view a Cause Map of this issue, click on “Download PDF” above.

5.5 Million Cases of Norovirus are Spread Via Food Each Year

By Kim Smiley

Norovirus outbreaks on cruise ships may make exciting headlines, but the reality is that only one percent of norovirus outbreaks occur on the high seas.  About 20 million people in the US are sickened by noroviruses in the US each year and one of the most common transmission paths is via food.  Food-borne norovirus is estimated to be responsible for 5.5 million cases of norovirus annually in the US.

A Cause Map, a visual method for performing a root cause analysis, can be used to analyze this issue.  The first step in the Cause Mapping process is to determine how an issue impacts the overall goals and then the Cause Map is built by asking “why” questions to visually lay out the cause-and-effect relationships.  In this example, we’ll focus on the safety goal since it is clearly impacted by 5.5 million cases of norovirus transmitted via food.

So why are people getting norovirus from food?  This is happening because they are consuming contaminated food, predominantly at restaurants or catered events.  The food becomes contaminated when a food worker’s hands are contaminated by norovirus and they touch food, particularly food that is ready to serve and won’t be cooked prior to consumption.  (Disclaimer: You may want to stop reading here if you are eating or thinking about going to out to eat soon.)

For those unfamiliar with the illness, norovirus is basically a gastrointestinal nightmare that can cause the human body to do very messy things.  If a food service worker is ill, the virus can get on their hands, especially after using the bathroom.  According to a Centers for Disease Control and Prevention (CDC) report, the transmission of food-borne norovirus is “primarily via the fecal-oral route.”  And that is more than enough said about that.

It is also worth asking why food workers are at work if they are under the weather.  In the US, few food service workers get paid sick leave so they may show up at work sick because they are concerned about the loss of income and the impact on their jobs.  It’s also important to ensure that workers understand the importance of good hygiene and have access to both water and soap and time to effectively wash their hands.

The final step in the Cause Mapping process is to develop solutions to reduce the risk of the problem recurring.  The solutions to this problem are both simple in concept and difficult to effectively implement.  Ideally, food workers should stay home when they are ill and for at least 48 hours afterwards, but this is much easier said than done for many people.  Food workers should also wash their hands after using the bathroom and before handling any food, but it can be difficult to enforce the policy because employers and managers aren’t (and shouldn’t be) closely monitoring what happens during bathroom breaks.

To view a high level Cause Map of this issue, click on “Download PDF” above.

Gamma Camera Collapse Kills Patient

By ThinkReliability Staff

On June 5, 2013, a nuclear medicine scanner was being used for a diagnostic procedure at a New York Veterans Affairs (VA) medical center when the gamma camera collapsed on a patient, causing his death.  This issue can be examined in a Cause Map, or visual root cause analysis, in order to determine both the impact to the organization’s goals as well as the causes of the incident.

In this case, multiple goals were impacted, the first and foremost of which is the death of a patient.  This is an impact to the patient safety goal.  Had the camera collapsed at a different time, it could have also injured an employee, causing an impact to the employee safety goal as well.  The death of a patient due to a medical device that functions other than designed is a “Never Event“, or an event that should never happen in a medical facility.  The scanner collapse on a patient clearly does not meet the goals for patient services.  The property goal is impacted due to potential damage to the scanner. (None of the publicly released reports specified how much damage, if any, was caused to the scanner and camera.)  The scanners of this type from this manufacturer were recalled shortly after this incident, impacting the operations goal and necessitating inspection and/or maintenance activities provided by the manufacturer, an impact to the labor time goal.

Investigation conducted shortly after this patient’s death determined the collapse was caused by loose bolts.  The machines were quickly subject to a Class 1 recall with the FDA.  Sites with the recalled equipment were told to discontinue use until inspections and, if needed, preventive maintenance could be performed by the manufacturer.  Said the manufacturer’s spokesperson, “If no issue is found with the support mechanism fasteners, the site can resume use of the device. If an issue with the support mechanism fasteners is found on a system, the GEHC Field Engineer will coordinate the replacement of impacted parts, and ensure that the system is operating appropriately and meets all specifications.”

Publicly released information about the incident has not specified who was responsible for the preventive maintenance that may have determined the need for tightening the bolts.  However, inspection and maintenance costs were covered by the manufacturer of the devices.

Sites that are using the affected models should have been notified and should stop use until the recommendations of the recall are met.  Although details of broader solutions were not available, both the manufacturer of the devices and the healthcare facilities using them will surely take a look at the preventive maintenance schedule to decrease the risk of patient injury from this type of event.

To view the Outline and Cause Map, please click “Download PDF” above.  Or click here to read more.

Study Finds Bacteria Can Live on Airplane Surfaces for Days

By Kim Smiley

With many bodies packed into a tight space and seemingly stale air, airplanes tend to bring out the inner germaphobe in many of us.  And the latest research, especially if you just read the headlines, isn’t going to help. Researchers at the University of Auburn found that Methicillin-resistant Staphylococcus aureus (commonly known as MRSA) and E. Coli can live for days on airplane surfaces.

The experiment involved sterilizing six surfaces found on airplanes (seat pocket, arm rest, leather seat, window shade, tray table and toilet handle), introducing MRSA and E. Coli bacteria to them and then measuring how long the bacteria survived.  Typical conditions inside an airplane were stimulated and the bacteria were suspended in three different solutions (saline, simulated seat and simulated saliva) to replicated the environment inside an airplane. The survival times ranged from 8 to 2 days.  This is a little scary, especially since an estimated 1-2 percent of people in the US may be carriers of these dangerous bacteria.

The good news, and there is good news, is that the surfaces where the bacteria lived the longest, the more porous surfaces such as the seat pocket, are the least likely surfaces to actually spread the contamination.  The study also didn’t look into how much bacteria remained after the typical cleaning  by airlines between flights, but the researchers plan to look into this in the future.

So what can you do to reduce the risk of illness if you have plans to travel on an airplane soon?  The simplest thing you can do to protect yourself is to frequently wash your hands with soap or use hand sanitizer as well as avoid touching your face as much as possible.  If you feel the need to take additional precautions, you can clean the areas around your seat with a disinfectant when you board the plane.

Airline cleaning procedures can also significantly impact the spread of illness.  So the question is, how much do you trust the thoroughness of the cleaning performed by the airline?  I think I may invest in a travel-size hand sanitizer before my next flight.

To see a high level Cause Map of this issue, click on “Download PDF” above.

Two Los Angeles area nurses are stabbed the same morning at different hospitals by different attackers

By ThinkReliability Staff

The stabbing of a nurse that took place in a Los Angeles County, California hospital on April 20th, 2014, resulted in the serious injury of a nurse.  The danger of increasing violence and attacks within hospitals was demonstrated by this and an unrelated incident at another Los Angeles County hospital that happened later that same morning.  Both involved stabbings to nurses, though in the first case, the attacker used a knife after he bypassed security and in the second case, the attacker stabbed a nurse with a pencil.

By performing a root cause analysis of just one demonstrative case, solutions that can prevent similar issues (like the one that happened later that very day as well as many other recent cases of hospital violence) can be developed.  We will use Cause Mapping, a visual diagram of cause-and-effect relationships, of this case as an example of hospital violence.

The first step in the Cause Mapping process is to describe the what, when, and where of an incident, and define the impacts to an organization’s goals.  In this case, the employee safety goal is impacted by the serious injury to a nurse.  The patient safety goal is impacted by the potential for injury to a patient.  The patient services goal is impacted by the fact that a violent attacker was able to bypass a weapons screening area.  It’s unclear from the information available whether other goals were impacted in this case.  Once that is determined the “?” can be replaced with the actual impacts to the goals, or “none”.

It can be helpful to determine the frequency of a type of incident.  Clearly, since about seven hours passed between two stabbings of nurses within the same county in California, the frequency of these types of attacks is much too high.

Next, cause-and-effect relationships are determined by beginning with an impacted goal and asking “Why” questions.  In this case, the injury to the nurse was caused by multiple stabbings.  The stabbings resulted from the nurse encountering a violent attacker and were impacted by the response time.  (In this case, security was searching for the man after he bypassed the weapons screening and was alerted to his presence when the attacked nurse began to scream.)   It is unclear how the man was able to bypass the weapons screening station, but ideally improvements that would decrease the possibility of entrants bypassing it in the future will be implemented.

Violence within hospitals has been increasing over recent years, believed to be due to a number of factors.  In addition, nurses and other hospital personnel have noted the difficulty in determining the potential for an escalation of violence in patients and other visitors.  According to the President of the Emergency Nurses Association, Deena Brecher, R.N.,”You need to be able to recognize when things are starting to escalate.  We know our behaviors can help escalate a situation, not intentionally.”

Many nurses are calling for establishment of workplace violence plans that would provide nurses and other hospital workers tools to identify and de-escalate potentially violent behavior, as well as provide additional protections against these types of attacks.  Some hospitals have begun using a mobile distress system, such as a help button worn around the neck that allows a worker to request backup in a situation that feels unsafe.

These solutions bring up an interesting discussion about prevention and blame.  The solutions listed above all require action by the part of nurses or hospital workers.  Many organizations attempt to determine the person to “blame” for a situation, and then assign corrective actions accordingly.  Clearly, nobody is trying to imply that hospital workers are at fault for these violent attacks (blame) but are rather trying to provide tools within their sphere of control to reduce the risk of worker injury (prevention).  Preventing all people prone to violence from entering a hospital, while theoretically more effective at solving the problem, is neither practical nor possible.  Thus it is hoped that providing hospital workers additional tools will result in reduced injuries from hospital violence.

To view the Outline and Cause Map, please click “Download PDF” above.  Or view the Workplace Violence Prevention for Nurses course offered by the Centers for Disease Control and Prevention (CDC).

Concern Over Rising Costs of Specialty Drugs

By Kim Smiley

The good news is that more and more specialty drugs that show promise for treating serious medical conditions are becoming available.  The bad news is that some of these drugs are really expensive, both for insurance companies and individuals.

The new issues swirling around specialty drugs are illustrated well by the new drug for treating hepatitis C from Gilead Sciences.  The new drug is a significant improvement over previous treatment with a higher cure rate, a shorter duration and fewer reported side effects, but it carries an equally significant price tag.  The pills cost $1,000 each with a typical course of treatment costing $84,000.  The pills are in high demand and Gilead has reported a record breaking $2.3 billion in sales of their new hepatitis C drug during its first full quarter on the market.  But on the flip side, UnitedHealth Group, one of the largest US insurers, has reported it has spent $100 million to cover the hepatitis C drug and had their stock prices decrease.

An insurance company losing money may not seem like a source of concern, but more of the burden of the cost of specialty drugs is being passed along to patients as insurance companies figure out how to deal with the high price of specialty drugs.  Some insurance plans require patients to cover twenty percent of the cost of specialty drugs and 20 percent of $84,000 is beyond the means of many patients.  And some specialty drugs are even more expensive.  Also, financially healthy insurance companies are also vital if they are going to provide medical insurance at prices people can afford.

So why are these drugs so expensive? There are a number of factors that make specialty drugs so expensive.  One of them is that they generally treat a condition that relatively few people suffer from.  When more people take a particular drug, the development costs of the drug can be spread out and recouped over a larger population making the overall cost less for each individual.  The opposite occurs when there are fewer people who will take a particular medication: the development costs are more concentrated, making drugs for less common conditions more expensive in general.

There is also not usually a generic alternative available for specialty medication.  Many of the expensive specialty medications are newer and still protected by patents so that generics can’t be manufactured.  Most specialty medications are also biologics, meaning they are derived from living organizations, and they can’t be duplicated.  Medications with generic versions available tend to be chemically-based and easier to replicate.

Only time will tell how specialty medications will continue to shape the healthcare system, but their presence is only likely to grow as more drugs are developed.  Solutions will need to be developed to allow patients reasonable, affordable access to specialty medications, but also keep insurance and drug companies in business.

To see a Cause Map, or visual root cause analysis, of this issue, click on “Download PDF” above.