All posts by Angela Griffith

I lead comprehensive investigations by collecting and organizing all related information into a coherent record of the issue. Let me solve a problem for you!

Hospital Working Hard to Prevent Recurrence of Medication Errors

By ThinkReliability Staff

Experts believe that most medical errors go unreported, due to a combination of lax reporting laws, strict patient privacy laws, and ambiguous definitions of these medical errors.  However, Seattle Children’s Hospital is making an attempt to be forthright and accountable with not only its mistakes, but its plan for improvements.  Seattle Children’s made the news recently when it published the serious reportable events that had occurred there from 2004-2010, including two deaths resulting from medication errors.

Additionally, a third child died after a medication error in September 2010, but it has not been determined if the medication error contributed to the death and an adult patient was given the wrong medication but recovered at around the same time.

In response to these errors, Seattle Children’s is performing a root cause analysis by independent experts to determine the causes.  In the meantime, Seattle Children’s is making specific process improvements, such as allowing only pharmacists and anesthesiologists to administer calcium chloride (an overdose of which led to one of the deaths), as well as general training and reminders for staff.  The hospital held a patient safety day on Saturday, October 30th, 2010, where over 550 staff members participated in training and simulations designed to improve patient safety, with a focus on medication safety.

Although the root cause analysis of the various medication errors has not been completed, Seattle Children’s has identified some specific causes that may contribute to medication errors and is launching improvements to try and reduce the impact of these causes.  For example, interruptions to nurses when they are in the process of ordering, preparing or administering medications can lead to medication errors.  During the training, the staff discussed the types of interruptions that occur and what can be done to reduce them.

Medication errors are estimated to kill 1.5 million people per year, so Seattle Children’s is not the only medical facility that will find itself reeling after the deaths of several patients.  These other facilities should take Seattle Children’s lead and begin a serious attempt to reduce these errors, and deaths.

Want to learn more?  See our webpage about medication errors in medical facilities or watch the video.

Cholera Outbreak in Haiti

By ThinkReliability Staff

Although the World Health Organization (WHO) has never seen cholera in Haiti before, it’s not a great surprise that an epidemic has spread through crowded makeshift camps where people have been living since the earthquake in January.  Unsanitary conditions frequently lead to outbreaks of the disease and in situations where there is very limited access to healthcare and clean water, death rates are often high.   The death rate in Haiti was nearly 10% at the beginning of the outbreak. It’s now decreased to 7.7% which is still well above the 1% death rate threshold accepted by the United Nations (UN).

We can do a closer examination of the causes contributing to this issue in a Cause Map, or visual root cause analysis.  The first step to the analysis is to capture information about the issue and define the problem with respect to an organization’s goals.  The problem can be defined as a cholera epidemic with a high death rate.  It was first discovered, or at least reported, in November of 2010 at makeshift camps in Haiti.  We’ll use the goals of the Haitian government to determine impacts.  At least 284 people have died and 3,600 people have been infected with cholera. This is an impact to the population safety goal.   The high death rate indicates a failure of population services from the government.  The environmental goal is impacted by the epidemic spread of the disease, and  the financial goal is impacted by the cost of treatment of those afflicted.

The second step of the analysis is to determine the causes that led to the impacted goals.  The high number of deaths results from the high number of infections and the high death rate.  Infections are caused by ingestion of contaminated food and water.  The bacteria that causes cholera is spreading due to heavy rains and the large number of people living in the unsanitary conditions.  The overcrowding in the camps is due to the earthquake that hit Haiti on January 12, 2010.  As previously mentioned, it’s unclear how the  bacteria got there in the first place, but not surprising that it did.  The high death rate is due to untreated dehydration.  Severe diarrhea is a symptom of a cholera infection, and with inadequate medical care and lack of access to clean water, the dehydration can quickly become severe enough to lead to death.

Support organizations like the WHO are desperately trying to stop the spread of the epidemic and reduce the rate of death.  However, it’s clear they have their work cut out for them, given the current circumstances.

New Research May Lead to Reduced Deaths from Sepsis

By ThinkReliability Staff

Sepsis kills about 200,000 people in the U.S. every year, about 30% of those afflicted. Millions die every year from sepsis worldwide.

Sepsis is a whole-body inflammatory state that occurs in the presence of an infection, and was previously known as a blood infection. The exact causes of sepsis are unclear. However, new research from Portugal’s Instituto Gulbenkian de Cienci has shown that during sepsis, red blood cells may be injured and leak a substance called heme. In combination with inflammation that is present during an infection, the high levels of heme become toxic to the body’s organs, causing organ failure.

The body produces a substance called hemopexin that cleans up the leaking heme. However, as levels of heme rise, levels of hemopexin fall, increasing the amount of heme in the body. The Instituto Gulbenkian de Cienci researchers have had success injecting mice with hemopexin to aid their body in reducing levels of heme. We can show the results of their research in Cause Mapping form, which can be viewed by clicking “Download PDF” above.

This potential solution to reduce the impact of sepsis still requires more research before it can be applied to humans, but may indicate a first step towards reducing the high impact of sepsis on mortality.

Severe Injury to Baby at Birth

By ThinkReliability Staff

In November 11, 2005, a woman in labor checked in to an Army Medical Center in Hawaii.  The mother was placed in the care of a second-year medical resident.  The fetus showed signs of distress throughout the day, and “took a turn for the worse” at approximately 5:00 p.m.  However, the child was not delivered until nearly 6:00 p.m. when the fetus was “almost dead”.  The baby was born with the umbilical cord wrapped around her neck and was turned over to another team.  On this team, a first-year intern placed an oxygen tube incorrectly, resulting in oxygen being delivered to the baby’s stomach instead of her lungs for approximately 40 minutes.  The child now has severe brain damage and the family was awarded a $11 M settlement for her care.   This is the fourth large settlement this hospital has made relating to errors made from 2003-2007, with an average of $11M per year to settle the lawsuits.

There are several  impacts to the goals of the medical center; namely, the impact to patient safety resulting from the injury to the child, the impact to the organizational goals from the settlement, the impact to patient services from the delay to the birth, and the impact to the time and labor goal for additional work required as a result of the issues with the child.  Our analysis begins with these impacts to the goals.

The injury to the child was caused by a lack of oxygen, caused in part from insufficient oxygen before the birth and in part because of insufficient oxygen after the birth.  The baby did not have sufficient oxygen before birth because the umbilical cord was wrapped around her neck and her birth was delayed, due to a “lack of communication” between the second-year resident and her supervisor who were charged with the mother’s care.  More detail on this lack of communication is not currently available; however, from the perspective of the  medical center involved, this is a key place where more detail needs to be added to the Cause Map once it is available.

The baby had insufficient oxygen after birth because the oxygen tube placed to increase her oxygen levels was feeding into her stomach rather than her lungs.  The tube was misplaced by a first-year intern who was being insufficiently supervised.  (Note that the reports don’t say this anywhere, but if you have an intern under supervision who places a tube incorrectly, you can conclude that the supervision was insufficient.)  Note this is another area that requires more detail for the investigation to be complete in order to find effective solutions.  As with any investigation the level of detail in the analysis is based on the impact of the incident on the organization’s overall goals.  Because of the extremely high impact on patient safety, the analysis for this issue should be quite detailed.

Brain Damage Resulting from Aggravation of Underlying Mitochondrial Disorder by Childhood Vaccinations

By ThinkReliability Staff

The Federal Court Division of Vaccine Injury Compensation (DVIC) ruled on November 9, 2007 that a child’s parents would receive compensation due to a vaccine injury.  Recently the amount of compensation was named – $1.5 million plus $500,000 a year for treatment.  There has been much discussion about what the award means.  With a charged issue such as this one, wording is very important.  The court’s wording in this case is as follows:

“DVIC has concluded that the facts of this case meet the statutory criteria for demonstrating that the vaccinations CHILD received on July 19, 2000, significantly aggravated an underlying mitochondrial disorder, which predisposed her to deficits in cellular energy metabolism, and manifested as a regressive encephalopathy with features of autism spectrum disorder.”

With a very careful reading of the court’s decision, we can put what the court determined was applicable to the case in a Cause Map, or visual root cause analysis.  (I’ve also recorded the chronological information in a timeline, used to assist with our understanding of the issue.  The information from the timeline is also from the ruling.)

First we can enter the impacts to the goals in the outline.  The patient safety goal was impacted because a child wound up brain-damaged (or with encephalopathy).  The resulting payment of over $1.5M is an impact to the financial goals of the vaccine injury board.  Based on the ruling, the vaccines aggravated an underlying condition, which can be considered an impact to the patient services and environmental goals.   Additionally, in this particular circumstance the child received vaccines not on schedule.  This could be considered an impact to the compliance goal.

Beginning with the most important goal – patient safety – we build the Cause Map.  The patient’s encephalopathy was determined to have been caused by an underlying condition that was aggravated by the receipt of vaccines against 9 diseases all at once.  However, the link between this and the encephalopathy isn’t yet clear.  Rather than just stopping our Cause Map, we can add a “?” in the middle of the cause-and-effect relationship, and highlight this unclear relationship.  This allows us to focus our attention.  Even with this question mark in the middle of the map, we can still do a lot to clarify the cause-and-effect causes.

For example, based on the child’s physicians’ diagnoses, we know that the underlying condition was a  mitochondrial disorder.  We also know that the child received vaccines against 9 diseases at once because she was behind on vaccines, having skipped some doses while she was ill.

Even with the uncertainty surrounding this analysis, the Cause Map can still provide clarity to the issue. It can also help lead to possible solutions (though adding more detail will allow for even more).  For example, doctors may adjust catch-up vaccination schedules based on this incident, resulting in fewer vaccines being given at once.

Whooping Cough Deaths

By ThinkReliability Staff

Amidst an epidemic of whooping cough (or pertussis) in California, which is the worst since 1958, eight infants have died of the disease.  Infants are prone to catching whooping cough when they are exposed to it, as they have not completed their first round of inoculations and have weak immune systems.  Because the symptoms of early sickness are so mild, whooping cough is very difficult to diagnose based on symptoms alone.   In each of the cases of the eight deaths, the infants had been seen by multiple care providers before an appropriate diagnosis was made.

 Exposure to infants is generally from parents or school-age siblings, who may themselves not know they are infected because of the mild symptoms.  Because the protection from the vaccine that protects against whooping cough lasts only about 5 years, many adults may find they’re no longer properly immunized against the disease.  Some children have never been immunized against whooping cough because their parents have chosen not to vaccinate their children.  Because of the lack of immunity of some members of the community, and the difficulty of diagnosing whooping cough, the problem may continue unless steps are taken.

Some of the solutions being considered are to not allow unvaccinated children to school.  The responsibility of this would fall to school or state officials.   Recommendations are made to keep vaccines for children and adults up to date, but this responsibility ultimately lies with the individual and/or parent.  This may make healthcare providers feel somewhat helpless.  But a recommendation for them has been given – children less than six months old who present breathing difficulties should be given lab tests that would show whooping cough.  This would not prevent infants from getting whooping cough, but would ensure that the disease is discovered, and so can be treated, as soon as possible, hopefully reducing deaths.

Patient Physically Assaulted

By ThinkReliability Staff

On June 24, 2010, a patient at a Maryland Hospital was physically assaulted by security guards after trying to leave the hospital.  A patient who is injured or killed due to physical assault is one of the ‘Never events’, i.e. medical events/errors that should never happen.

We will look at the causes of this event in a Cause Map, or visual root cause analysis.  The information used to put together this analysis is from the legal filing.

On June 23, 2010, a man (who we’ll call “the patient”) was in a serious car accident and was airlifted to a Maryland Hospital.  He woke up the next day, after receiving treatment for blunt torso trauma and chest pain and asked for something to eat.  After some confusion, the patient realized that his identification bracelet was not his – it identified a female patient 13 years his junior.  At this point, he decided to leave the hospital and was stopped with a verbal and physical exchange with several security guards.  He eventually was able to leave successfully, and was treated at a second hospital for broken ribs, a sprained shoulder, a ruptured spleen, and a concussion.

As mentioned before, physical abuse of a patient is a “Never event”, and is an impact to the compliance goal.   More importantly, there was injury to the patient, resulting in an impact to the safety goal.   Because the patient was wrongly identified as needing surgery to remove a cancerous mass, there was the potential for the patient receiving unnecessary surgery, also an impact to the safety goal.  The patient has taken legal action against the employees involved (Employee Impact goal) and has filed a lawsuit against the hospital for more than $12 million (an impact to the organizational goal).   The misidentification of the patient can be considered an impact to the patient services goal.

We begin our Cause Map with these impacted goals.  The patient was beaten because employees were trying to restrain the patient to keep him from leaving, and restrained him in an inappropriate manner.  The employees were trying to get the patient to stay because they believed he needed surgery because he was misidentified.  At this point, the hospital involved should be asking “Where did our identification procedure go wrong?”  The next step in the investigation should be to look at the identification procedure to determine specifically which steps allowed the misidentification to happen.  Only once this is determined can appropriate corrective actions be taken to prevent future misidentifications.

Another area that requires more analysis is the patient restraint procedure.  The security guards in this instance were attempting to restrain the patient to prevent him from leaving.  However, they did this in an inappropriate manner.  The question is, why?  Were the guards not following the existing restraint procedure? If not, why not?  Or, is there no procedure for restraint?  Were the restraint expectations not clearly provided to the guards?  Again, until the specific breakdowns leading to this incident are uncovered, corrective actions will be generic and may not be effective.  To view a one-page PDF showing the investigation at this point, click on “Download PDF” above.

Feeding Tube Misconnection Results in Patient, Fetus Death

By ThinkReliability Staff

Recent articles have related several stories of patients being injured or even killed by medical tubing mix-ups.  A product used other than intended that results in a patient death is one of the “Never Events” – events that should never happen at healthcare facilities.   An article in The New York Times discusses injuries and deaths caused by accidentally connecting food meant for a feeding tube through an intravenous (IV) line.    A specific incident mentioned in the article can be analyzed in a Cause Map to capture all of the causes in a simple, intuitive format that fits on one page.

In this case, a pregnant woman was prescribed a feeding tube to ensure that she and her baby were getting adequate nourishment.  The feeding tube was improperly connected to the intravenous (IV) line, causing liquid food to enter her veins, causing sepsis which killed her and her fetus.

One issue (cause) is that medical personnel made an incorrect connection.  Although there was no information given in the article, this would certainly be an area for the responsible organization to look at in more detail and determine if there are steps that can be taken to reduce the risk of these types of errors.  (Some organizations have found success with color coding the tubes, for example.)

However, another issue is that the tubes COULD be incorrectly connected in the first place.  The number of errors in feeding tube connections (discussed in an article from The Joint Commission Journal on Quality and Patient Safety) has led the U.S. Food and Drug Administration (FDA) to consider declaring these products unsafe.

The tubes become compatible with other tubing connections (such as IV) when needle-free connectors were adopted, to increase caregiver safety (by limiting exposure to needles).  Since then, there have been issues with the compatible tubing.  (A history of tubing issues is found on the PDF, which can be downloaded by clicking “Download PDF” above.)   And, feeding tube connections that are incompatible with other tubing lines are difficult to find.  There are many causes given for the delay of developing incompatible tubing, including resistance from the medical industry, difficulties with the FDA approval process, and a delay in forwarding requirements for incompatible tubing.  This delay is mainly attributed to waiting for an international group to develop a recommendation regarding tubing, which is expected to take several years.

The FDA has an expedited review process which allows approval of a device if it works like an already approved device, regardless of whether that device is safe, or has been recalled.  Because compatible tubing devices have already been approved, new devices that use the same – compatible – connection can go through this expedited process, whereas incompatible connections can not.  Without federal agencies requiring change, it’s been difficult getting manufacturers to update their products.

View the problem outline, Cause Map, and timeline of tubing issues by clicking “Download PDF” above.

Cardiac Arrest Due to Leaky Equipment

By ThinkReliability Staff

A patient death associated with equipment that does not perform properly is one of the “Never Events” (i.e. events that should never happen).  A case where a leaking piece of equipment caused the cardiac arrest of a child is described by the ECRI Institute.  We can record this information in a Cause Map, or visual root cause analysis in order to show the relationships between the causes and suggested solutions.  The root cause analysis investigation can be seen by clicking on “Download PDF”.

Because a patient suffered cardiac arrest, there was an impact to the patient safety goal.  We begin this impacted goal and ask “Why” questions to add more causes to the Cause Map.  The cardiac arrest was caused by suffocation.  The suffocation was a result of undetected excessive carbon dioxide (CO2) levels.  The levels were undetected because the child was under anesthesia (thus making it difficult to judge the breathing air quality) and because there was no device to detect high CO2 levels.  The CO2 levels were high due to rebreathing.  (The high CO2 levels were an impact to the patient services  and environmental goals as well.)

The rebreathing occurred because of a lower than normal fresh gas (breathing oxygen) flow.  With a breathing system of this type, the rebreathing (or taking in exhaled CO2) is inversely proportional to the fresh gas flow.  As the gas flow decreases, the rebreathing increases.  The reduced fresh gas flow was caused by a leaky humidifier.  (The leaky humidifier can be considered an impact to the property goal.)  The leaky humidifier was caused by an unrepaired pressure drop through the gas flow passages.  The pressure drop was caused by an inadequate seal on those passages due to two (of four) loose screws that were apparently not noticed.

The leak had been detected during the pre-use test of the equipment.  The leak was believed to be repaired, but instead of performing another pre-use test of the equipment, the system was put together, and a test was done on the whole system.  The system has a higher allowed leak rate than each individual piece of equipment, so the fact that the leak was not in fact repaired was not noticed.

Some of the suggestions given by ECRI Institute to prevent this kind of incident from recurring are to install a CO2 detector on the breathing circuit, ensure the anesthesia equipment is on a regular inspection and maintenance program, and to redo individual equipment tests after repairs.

Positive cancer screenings: the needle in the haystack?

By ThinkReliability Staff

Recent research from the journal Current Biology has determined that workers in all industries, including healthcare, are less likely to find rare items.  Says lead author Jeremy Wolfe of Harvard Medical School, “If you don’t find it often, you often don’t find it.”   The research may help explain some of the difficulty in finding rare cancers.  Simply put, if a medical professional hasn’t seen very many examples of what cancer looks like in screening tests, it’s more difficult for that professional to find it.

This gives an argument towards greater specialization – based on this research, a medical professional who spends all day looking for breast cancer in mammograms would be more effective at finding it than a general practitioner who may only see a few cases of breast cancer throughout his or her career.

However, another recommended solution is to make sure that the people doing the screening see many examples of what they’re looking for.  Not only could this be done during medical training, but some facilities have found success in “booster exercises”.  Essentially, before a worker spends time screening for rare occurrences, such as indications of cancer, look at results that include a number of positive (i.e. cancerous) screenings.  This helps focus the worker’s attention, leading to quicker and more accurate screening results.